

In this example of differential expression measurements data was analyzed from 7680 genes in CD4-T-cell lines at time t = 24 hours after infection with HIV type 1 virus. 4 replicates were performed for infected cells, and non-infected controls. (Data courtesy of Sohrab Shah).

The raw data was log-transformed. The y-axis of this "M/A plot" shows "minus" calculations i.e. $\log(\text{sample}) - \log(\text{control})$, which corresponds to a log-ratio measurement of the untransformed data. Genes with high increases of expression are on top, genes that are repressed are on the bottom. Most values show no differential expression and cluster around zero, because the values for sample and control are approximately the same, thus their ratio is around one.

The x-axis shows "average" calculations, i.e. the mean of sample and control. Highly expressed genes are on the right, genes with low expression levels are on the left. Note that the noise is larger for genes that have dim spots on the microarray slide.

The question now is: which of these genes would we consider **Differentially Expressed**, so we can follow up on the hypothesis that they contribute to disease mechanisms?

NCBI: G	EO AND GE	EO2R						
🔍 🔍 🔍 🖉	EO2R - GEO - NCBI	×				θ		
← → C						@☆ 🥺 😣 🗧		
S NCI	31					Gene Expression Omnibus		
	20				GEO Publications	FAQ MIAME Email GEO		
Use GEO2R to genes ordered GEO accessio	compare two or more by significance. Ful n	groups of Sar linstructions	nples in order to ic You Tube et	entify genes	that are differentially expressed across experimental conditions. Resu	ilts are presented as a table of		
GEO2R	Value distribution	Options	Profile graph	R script				
 • Quick start 9. Specify a GEO Series accession and a Platform if prompted. • Click 'Define groups' and enter names for the groups of Samples you plan to compare, e.g., test and control. • Assign Samples to each group. Highlight Sample rows then click the group name to assign those Samples to the group. Use the Sample metadata (title, source and characteristics) columns to help determine which Samples belong to which group. • Click 'Top 250' to perform the calculation with default settings. • Results are presented as a table of genes ordered by significance. The top 250 genes are presented and may be viewed as profile graphs. Alternatively, the complete results table may be saved. • You may change settings in Options tab. How to use Top 250 Save all results								

The GEO database provides tools to support differential expression analysis in data sets.

A keyword search yields candidate data sets.

NCBI: GE	O Browser								
🗧 🔍 🗧 😒 GEO D	DataSet Browser ×				θ				
\leftarrow \rightarrow C \triangleq http	@ ☆ 🐼 😁 🗄								
S NCBI		DATA BRO	SET ^{CURATED} OWSER	Gene Expression Omnibus					
Search for GDS2347	[ACCN] Sea	clear Show All Advanced S	earch						
	I	DataSet Record GDS2347: Expression	Profiles Data Analysis Tools Sar	nple Subsets					
Title:	Wild type strain across two cel	cycles (I)			Cluster Analysis				
Summary:	Analysis of wild type W303 cel compared to those from an exp	ctor. Results							
Organism:	Saccharomyces cerevisiae								
Platform:	GPL1914: FHCRC Yeast Ampl	Download							
Citation:	Pramila T, Miles S, GuhaThaka restrict ECB-dependent transc PMID: 12464633	DataSet full SOFT file DataSet SOFT file Series family SOFT file							
Reference Series:	GSE3635	Sample count:	13		Series family MINiML file				
Value type:	log ratio	Series published:	2006/06/01		Annotation SOFT me				
Data Analysis Tools									
Find genes 🔞									
Compare 2 sets of samp	ples	Find gene name or symbol	ol: Go						
Cluster heatmaps		Find genes that are up/de for this condition(s):	own ✓ time Go						
Experiment design and	value distribution								
					NLM NIH GEO Help Disclaimer Accessibility				

The dataset browser displays information about the experiment.

Hierarchical clustering shows genes with similar expression profiles. Regions of the dense gene tree can be expanded (i.e. the region between the dotted red lines).

The expanded region of the expression "heatmap" identifies the individual genes and shows how they are up- and down regulated in the individual experiments of the data set. Since this is a cell cycle study, the columns correspond to time points. We see genes that are highly expressed at the beginning of the cycle and poorly expressed towards its end.

The GEO2R tool supports detailed analysis and gene discovery: first, the quality of the samples is determined, to allow identifying problematic experiments that do not follow the general distribution of the others ...

NCBI: GEO2R											
• • • Q GEO2R - GEO - NCBI ×										Θ	
\leftarrow \rightarrow C https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE3635 Q \Rightarrow) :		
genes ordered by significance. Full instructions Yeu The											
GEO accession GSE3635 Set Saccharomyces cerevisiae alpha factor cell cycle											
								es			
			Enter a group	name: List				Colum	ns	⊸ Set	9
roup	Accession	Title	× Cancel sel	ection		Source name 1	Source name 2	Yeast cell cycle-	Yeast	Yeast cell	с
		\$	0	8	¢	\$	\$	time point 0 mint (Ch1)	asynchronous culture (Ch2)	time point (Ch1)	1
	GSM81064	Yeast cell cycl	ı 🔲 10	8	000.rfm	Yeast cell cycle-time point 0 min	Yeast asynchronous culture			. ,	
-	GSM81065	Yeast cell cycl	20	8	0010.rfm	Yeast cell cycle-time point 10 min	Yeast asynchronous culture				
-	GSM81066	Yeast cell cycl	30	E	0020.rfm	Yeast cell cycle-time point 20 min	Yeast asynchronous culture				
-	GSM81067	Yeast cell cycl	40	8	0030.rfm	Yeast cell cycle-time point 30 min	Yeast asynchronous culture				
-	GSM81068	Yeast cell cycl	50	8	0040.rfm	Yeast cell cycle-time point 40 min	Yeast asynchronous culture				
-	GSM81069	Yeast cell cycl	60	8	0050.rfm	Yeast cell cycle-time point 50 min	Yeast asynchronous culture				
-	GSM81070	Yeast cell cycl	70	E	0060.rfm	Yeast cell cycle-time point 60 min	Yeast asynchronous culture				
-	GSM81071	Yeast cell cycl	80	8)070.rfm	Yeast cell cycle-time point 70 min	Yeast asynchronous culture				
	GSM81072	Yeast cell cycl	90	8	080.rfm	Yeast cell cycle-time point 80 min	Yeast asynchronous culture				
-	GSM81073	Yeast cell cycl	le-time point 90	min 2001-04-11_0	090.rfm	Yeast cell cycle-time point 90 min	Yeast asynchronous culture				
-	GSM81074	Yeast cell cycl	le-time point 100	0 min 2001-04-11	_0100.rfm	Yeast cell cycle-time point 100 min	Yeast asynchronous culture				
-	GSM81075	Yeast cell cycl	le-time point 110	0 min 2001-04-11_	_0110.rfm	Yeast cell cycle-time point 110 min	Yeast asynchronous culture				
-	GSM81076	Yeast cell cycl	le-time point 120	0 min 2001-04-11_	_0120.rfm	Yeast cell cycle-time point 120 min	Yeast asynchronous culture				
GEO2R Value distribution Options Profile graph R script Calculate the distribution of value data for the Samples you have selected. Distributions may be viewed graphically as a Image: Calculate the distribution of value data for the Samples you have selected. Distributions may be viewed graphically as a											

... then groups are defined and differential expression values are computed between groups, to identify the most significant differentially expressed genes.

http://steipe.biochemistry.utoronto.ca/abc

 $\label{eq:bound} B \ O \ R \ I \ S \ \ . \ \ S \ T \ E \ I \ P \ E \ @ \ U \ T \ O \ R \ O \ N \ T \ O \ . \ C \ A$

DEPARTMENT OF BIOCHEMISTRY & DEPARTMENT OF MOLECULAR GENETICS UNIVERSITY OF TORONTO, CANADA